Midterm Review Notes -

Unit 1 – Intro

- 3 States of Matter
 - Solid definite shape, definite volume, very little molecular movement
 - Liquid definite volume, takes shape of container, molecules move faster
 - Gas does not have a definite volume or shape, molecules are moving very fast
- Properties
 - Physical anything that can be observed without changing the identity of the substance
 - Chemical characteristics which are exhibited as one substance is chemically transformed into another
- Changes
 - Physical change in which the matter's physical appearance is altered, but composition remains unchanged; can be reversed
 - Chemical change that alters the composition of the original matter; can't be reversed
- Classification of Matter
 - Pure Substance uniform properties throughout the substance
 - Element composed of only 1 type of atom
 - Compound composed of multiple atoms, but cannot be separated
 - o Mixture
 - Heterogeneous composition with a non-uniform composition, components can separate and very in composition
 - Homogenous composition is mixed uniformly throughout, doesn't separate out
 - Solvent liquid that does the dissolving
 - Solute solid that is being dissolved

Unit 2 - The Atom

- Protons positive charge, inside the nucleus, 1 amu; tell the identity of the atom
- Electrons negative charge, orbits the nucleus (outside), 1/2000 amu; give atoms their chemical properties
- Neutrons neutral charge, inside the nucleus, 1 amu
- Ions atoms with either extra electrons or missing electrons
- Isoptopes atoms with the same # of protons, but differing numbers of neutrons, which leads to different atomic masses
- Neutral atoms atoms that contain the same number of protons and electrons
- Lewis structure shows the bonding of valence electrons & lone pairs
- Valence electrons number of electrons in the outer shell, can only be 8
- Orbital diagram show individual orbitals in each energy level
 - \circ s holds 2
 - o p holds 6
 - o d holds 10
 - o **f holds 14**
- Electron Configuration Rules
 - Aufbau must start at the lowest energy level & fill orbitals in the correct order

- Hund (pizza rule) every orbital has to have 1 electron first before second electrons can be 0 given
- Pauli electrons have to go in opposing directions
- **Energy Levels** •
 - E level 1 holds 2
 - All other E levels holds 8 0
- Models of the atoms
 - Democritus atomos 0
 - Dalton first atomic theory 0
 - o JJ Thomson discovered electrons; Plum Pudding Model
 - Rutherford discovered protons & nucleus; Gold Foil Experiment
 - Bohr Bohr model; electrons move around nucleus in shells
 - Chadwick discovered neutrons & had no charge 0
- Atomic Models

0

0

Rutherford 0

Unit 3 - The Periodic Table

• PT Valence Electrons & Energy Levels

	1A								8A
Row 1	1 H 1.01	2A		ЗА	4A	5A	6A	7A	2 He 4.00
Row 2	3 Li 6.94	4 Be 9.01		5 B 10.8	6 C 12.0	7 N 14.0	8 0 16.0	9 F 19.0	10 Ne 20.2
Row 3	11 Na 23.0	12 Mg 24.3		13 Al 27.0	14 Si 28.1	15 P 30.1	16 S 32.1	17 CI 35.5	18 Ar 39.9
Row 4	19 K 39.1	20 Ca 40.1		31 Ga ^{69.7}	32 Ge 72.6	33 As ^{74.9}	34 Se ^{79.0}	35 Br ^{79.9}	36 Kr 83.8
Row 5	37 Rb 85.5	38 Sr 87.6		49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 127	54 Xe 133
Row 6	55 Cs 133	56 Ba ¹³⁷		81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
Row 7	87 Fr (223)	88 Ra (226)							

Group # = Valence Electron #

Unit 4 - Nomenclature & Bonding

Naming Rules

Type I lonics-1. Cation named, Then anion 2 Cation gets name from element 3. Mion gets name from element & add suffix - Ide 4 Combine 2 83 for name Ex: LICI Lithium chloride Multiple Cations *Transitions lype I lonics 1. Cation 1st, then anion 2 Cation gets element name & Roman numeral for charge 3. Anion name from element & -ide 4. Combine 2 &3 FX. CuClz Copper(II) Chlande Type III Binary Covalents-Acids. 1. Stelement named for element 2 2nd clement named asif it were an anion Z -ide suffix 3. Prefixes are used to denote #of atoms Monor | Tri=3 Penta=5 Hepta7 Nona-9 *Mono never used in 1st element! Octa-8 Deca-10 EX. PCIZ Phosphorous trichloride zor move atoms bound together Polyatomics-* Given special names [memorize] * OXYANIONS ranions & different #s of O J#=+ite $\uparrow = -ate$ NO2 Nitrite Nitrate

Acids-1. If anion doesn't contain 0 name & pretix hydro- & Suffix - 10 [Ex. HCI Hydrochlone Acid] 2. If anion contains 0 name is from root of central element in anion & suffix of -ic or -ous [-ate uses-ic - ite uses-ous] *See polyatomics *See polyatomic

- Polar vs Covalent ID Rules
 - Lone pair on central atom = POLAR
 - Charge on molecule = POLAR
 - If neither of the above are true & the lewis structure is symmetrical, symmetry trumps polarity = NONPOLAR

Midterm Review Notes -

- Intermolecular vs Intramolecular
 - INTER attractions between molecules (van der Waals)
 - Ionic
 - H-Bonds (H & F, O, or N)
 - Dipole
 - London Forces
 - INTRA attractions within the molecule (electronegativity)
 - Ionic 1.7+
 - Polar 0.5 to 1.69
 - Nonpolar 0.49 & below
- Electrolyte vs Nonelectrolyte
 - Electrolyte any substance that separates (ionizes or dissociates) into ions in water; conducts electricity
 - o Nonelectrolyte does not conduct electricity nor does it break down in water

Unit 5 – Chemical Reactions

- 5 Rxn Types (Written as Reactants \rightarrow Products)
 - Synthesis 2 elements become 1 molecule
 - $A + B \rightarrow AB$
 - Decomposition 1 molecule breaks down into 2 atoms
 - $AB \rightarrow A + B$
 - Single Replacement 1 element takes the place of the like element in a molecule)
 - $AB + C \rightarrow A + CB$
 - If C is + then it replaces the + atom in AB; if C is then it replaces the atom in AB)
 - Double Replacement cations and anions switch "partners" to form new compounds
 - $AB + CD \rightarrow AD + CB$
 - o Combustion hydrocarbon reacts with oxygen to form carbon dioxide and water
 - $C_xH_y + O_2 \rightarrow CO_2 + H_2O$
- Signs a Rxn has occurred
 - Formation of a precipitate (solid or liquid)
 - Formation of a gas
 - Heat or light is given off (change in temperature)
 - Change in color
 - Change in odor
- Driving Forces of a Rxn
 - o Double Replacement
 - Formation of a solid (*most common)
 - Formation of water (H₂O in products)
 - o All others
 - Formation of gas (H₂, N₂, O₂, F₂, Cl₂)
 - Transfer of electrons (*most common)